Ubiquitin Specific Protease 21 Is Dispensable for Normal Development, Hematopoiesis and Lymphocyte Differentiation
نویسندگان
چکیده
USP21 is a ubiquitin specific protease that catalyzes protein deubiquitination, however the identification of its physiological substrates remains challenging. USP21 is known to deubiquitinate transcription factor GATA3 and death-domain kinase RIPK1 in vitro, however the in vivo settings where this regulation plays a biologically significant role remain unknown. In order to determine whether USP21 is an essential and non-redundant regulator of GATA3 or RIPK1 activity in vivo, we characterized Usp21-deficient mice, focusing on mouse viability and development, hematopoietic stem cell function, and lymphocyte differentiation. The Usp21-knockout mice were found to be viable and fertile, with no significant dysmorphology, in contrast to the GATA3 and RIPK1 knockout lines that exhibit embryonic or perinatal lethality. Loss of USP21 also had no effect on hematopoietic stem cell function, lymphocyte development, or the responses of antigen presenting cells to TLR and TNFR stimulation. GATA3 levels in hematopoietic stem cells or T lymphocytes remained unchanged. We observed that aged Usp21-knockout mice exhibited spontaneous T cell activation, however this was not linked to altered GATA3 levels in the affected cells. The contrast in the phenotype of the Usp21-knockout line with the previously characterized GATA3 and RIPK1 knockout mice strongly indicates that USP21 is redundant for the regulation of GATA3 and RIPK1 activity during mouse development, in hematopoietic stem cells, and in lymphocyte differentiation. The Usp21-deficient mouse line characterized in this study may serve as a useful tool for the future characterization of USP21 physiological functions.
منابع مشابه
The critical role of histone H2A-deubiquitinase Mysm1 in hematopoiesis and lymphocyte differentiation.
Stem cell differentiation and lineage specification depend on coordinated programs of gene expression, but our knowledge of the chromatin-modifying factors regulating these events remains incomplete. Ubiquitination of histone H2A (H2A-K119u) is a common chromatin modification associated with gene silencing, and controlled by the ubiquitin-ligase polycomb repressor complex 1 (PRC1) and H2A-deubi...
متن کاملUSP10 Is an Essential Deubiquitinase for Hematopoiesis and Inhibits Apoptosis of Long-Term Hematopoietic Stem Cells
Self-renewal, replication, and differentiation of hematopoietic stem cells (HSCs) are regulated by cytokines produced by niche cells in fetal liver and bone marrow. HSCs must overcome stresses induced by cytokine deprivation during normal development. In this study, we found that ubiquitin-specific peptidase 10 (USP10) is a crucial deubiquitinase for mouse hematopoiesis. All USP10 knockout (KO)...
متن کاملThe histone H2A deubiquitinase Usp16 regulates hematopoiesis and hematopoietic stem cell function.
Epigenetic mechanisms play important regulatory roles in hematopoiesis and hematopoietic stem cell (HSC) function. Subunits of polycomb repressive complex 1 (PRC1), the major histone H2A ubiquitin ligase, are critical for both normal and pathological hematopoiesis; however, it is unclear which of the several counteracting H2A deubiquitinases functions along with PRC1 to control H2A ubiquitinati...
متن کاملThe Ufm1-activating enzyme Uba5 is indispensable for erythroid differentiation in mice
Post-translational protein modifications are systems designed to expand restricted genomic information through functional conversion of target molecules. Ubiquitin-like post-translational modifiers regulate numerous cellular events through their covalent linkages to target protein(s) by an enzymatic cascade analogous to ubiquitylation consisting of E1 (activating), E2 (conjugating) and E3 (liga...
متن کاملAurora kinase A is required for hematopoiesis but is dispensable for murine megakaryocyte endomitosis and differentiation.
Aurora kinase A (AURKA) is a therapeutic target in acute megakaryocytic leukemia. However, its requirement in normal hematopoiesis and megakaryocyte development has not been extensively characterized. Based on its role as a cell cycle regulator, we predicted that an Aurka deficiency would lead to severe abnormalities in all hematopoietic lineages. Here we reveal that loss of Aurka in hematopoie...
متن کامل